China Professional 10c Universal Joint for CZPT

Product Description

Spicer  P (mm) R (mm) Caterpillar Precision  Rockwell  GKN Alloy Neapcon Serie  Bearing type
5-2002X 33.34 79 644683 951 CP2002 HS520   1-2171 2C 4LWT
5-2117X 33.34 79 316117 994   HS521   1-2186 2C 4LWD
5-2116X 33.34 79 6S6902 952 CP2116   1063   2C 2LWT,2LWD
5-3000X 36.5 90.4 5D9153 536   HS530 1711 3-3152 3C 4LWT
5-3014X 36.5 90.4 9K1976 535   HS532     3C 2LWT,2LWD
5-4143X 36.5 108 6K 0571 969   HS545 1689 3-4143 4C 4HWD
5-4002X 36.5 108 6F7160 540 CP4002 HS540 1703 3-4138 4C 4LWT
5-4123X 36.5 108 9K3969 541 CP4101 HS542 1704 3-4123 4C 2LWT,2LWD
5-4140X 36.5 108 5M800 929 CP4130 HS543   3-4140 4C 2LWT,2HWD
5-1405X 36.5 108   549     1708   4C 4LWD
5-4141X 36.5 108 7M2695 996         4C 2LWD,2HWD
5-5177X 42.88 115.06 2K3631 968 CP5177 HS555 1728 4-5177 5C 4HWD
5-5000X 42.88 115.06 7J5251 550 CP5122 HS550 1720 4-5122 5C 4LWT
5-5121X 42.88 115.06 7J5245 552 CP5101 HS552 1721 4-5127 5C 2LWT,2LWD
5-5173X 42.88 115.06   933   HS553 1722 4-5173 5C 2LWT,2HWD
5-5000X 42.88 115.06   999         5C 4HWD
5-5139X 42.88 115.06             5C 2LWD,2HWD
5-6102X 42.88 140.46 643633 563 CP62N-13 HS563 1822 4-6114 6C 2LWT,2HWD
5-6000X 42.88 140.46 641152 560 CP62N-47 HS560 1820 4-6143 6C 4LWT
5-6106X 42.88 140.46 1S9670 905 CP62N-49 HS565 1826 4-6128 6C 4HWD
G5-6103X 42.88 140.46   564     1823 4-6103 6C 2LWT,2LWD
G5-6104X 42.88 140.46   566     1824 4-6104 6C 4LWD
G5-6149X 42.88 140.46             6C 2LWD,2HWD
5-7105X 49.2 148.38 6H2577 927 CP72N-31 HS575 1840 5-7126 7C 4HWD
5-7000X 49.2 148.32 8F7719 570 CP72N-32 HS570 1841 5-7205 7C 4LWT
5-7202X 49.2 148.38 7J5242 574 CP72N-33 HS573 1843 5-7207 7C 2LWT,2HWD
5-7203X 49.2 148.38   575 CP72N-55     5-7208 7C 4LWD
5-7206X 49.2 148.38   572 CP72N-34   1842 5-7206 7C 2LWT,2LWD
5-7204X 49.2 148.38   576 CP72N-57     5-7209 7C 2LWD,2HWD
5-8105X 49.2 206.32 6H2579 928 CP78WB-2 HS585 1850 6-8113 8C 4HWD
5-8200X 49.2 206.32   581 CP82N-28   1851 6-8205 8C 4LWT

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Certification: ISO, Ts16949
Structure: Single
Material: 20cr
Type: Universal Joint
Transport Package: Box + Plywood Case
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

universal joint

Can universal joints be used in precision manufacturing equipment?

Yes, universal joints can be used in precision manufacturing equipment, depending on the specific requirements and applications. Here’s a detailed explanation:

Precision manufacturing equipment often requires precise and reliable motion transmission between different components or subsystems. Universal joints can be employed in such equipment to facilitate the transmission of rotational motion and torque while accommodating misalignment or angular variations. However, their usage in precision manufacturing equipment is subject to certain considerations:

  1. Motion Transmission: Universal joints are effective in transmitting rotational motion and torque across misaligned or non-collinear shafts. In precision manufacturing equipment, where precise and synchronized motion is crucial, universal joints can provide flexibility and compensate for slight misalignments or angular variations, ensuring reliable motion transfer.
  2. Angular Accuracy: Precision manufacturing often requires maintaining precise angular accuracy during operation. While universal joints can accommodate misalignments, they introduce certain angular errors due to their design. These errors may be acceptable or manageable depending on the specific application. However, in cases where extremely tight angular accuracy is required, alternative motion transmission mechanisms, such as precision couplings or direct drives, might be preferred.
  3. Backlash and Play: Universal joints can exhibit a certain degree of backlash or play, which may affect the precision of the manufacturing process. Backlash refers to the slight movement or play that occurs when reversing the direction of rotation. In precision manufacturing equipment, minimizing backlash is often critical. Careful selection of high-quality universal joints or incorporating additional mechanisms to reduce backlash, such as preloading or anti-backlash devices, might be necessary to achieve the desired precision.
  4. Load and Speed Considerations: When using universal joints in precision manufacturing equipment, it is essential to consider the expected loads and operating speeds. Universal joints have specific load and speed limitations, and exceeding these limits can lead to premature wear, reduced precision, or even failure. Careful selection of universal joints with appropriate load and speed ratings based on the application’s requirements is necessary to ensure optimal performance.
  5. Maintenance and Lubrication: Regular maintenance and proper lubrication are crucial for the reliable and precise operation of universal joints in precision manufacturing equipment. Following manufacturer guidelines regarding lubrication intervals, lubricant types, and maintenance procedures is essential. Regular inspection of the joints for wear, damage, or misalignment is also necessary to identify any issues that could affect precision.
  6. Application-Specific Considerations: Each precision manufacturing application may have unique requirements and constraints. Factors such as available space, environmental conditions, required precision levels, and integration with other components should be taken into account when determining the feasibility and suitability of using universal joints. Consulting with experts or manufacturers specializing in precision manufacturing equipment can help in evaluating the best motion transmission solution for a specific application.

In summary, universal joints can be used in precision manufacturing equipment to facilitate motion transmission while accommodating misalignment. However, their usage should be carefully evaluated considering factors such as angular accuracy requirements, backlash and play limitations, load and speed considerations, maintenance needs, and application-specific constraints.

universal joint

How do you address noise issues in a universal joint?

Noise issues in a universal joint can be addressed through various measures. Here’s a detailed explanation:

Noise in a universal joint can result from factors such as misalignment, imbalance, wear, or inadequate lubrication. Addressing noise issues involves identifying the underlying causes and implementing appropriate solutions. Here are some steps to mitigate noise problems in a universal joint:

  • Alignment: Ensuring proper alignment between the input and output shafts is crucial for reducing noise in a universal joint. Misalignment can lead to increased stress, vibration, and noise generation. Aligning the shafts within the manufacturer’s specified tolerances helps minimize the angular deflection and associated noise.
  • Balancing: Imbalance in the rotating components of a universal joint can contribute to noise generation. Balancing the yokes, crosses, or other relevant components helps minimize vibrations and noise. Techniques such as adding counterweights or using precision balancing equipment can help achieve better balance and reduce noise levels.
  • Lubrication: Inadequate or improper lubrication can result in increased friction, wear, and noise in a universal joint. Using the manufacturer-recommended lubricant and following the specified lubrication intervals help ensure smooth operation and minimize noise. Regular maintenance, including lubrication checks and replenishment, is essential to mitigate noise issues arising from insufficient lubrication.
  • Wear and Replacement: Wear in the universal joint components, such as the cross, bearings, or yokes, can contribute to noise. Regular inspection for signs of wear, such as pitting, scoring, or play, is necessary. If wear is detected, replacing the worn components with new ones that meet the manufacturer’s specifications can restore proper functionality and reduce noise.
  • Vibration Damping: Implementing vibration damping techniques can help reduce noise in a universal joint. This may involve using vibration-absorbing materials, such as rubber or elastomeric elements, at appropriate locations to absorb and dissipate vibrations. Dampening vibrations helps minimize the transmission of noise and improves the overall performance of the joint.
  • Proper Maintenance: Regular maintenance practices are vital for addressing noise issues in a universal joint. This includes periodic inspections, lubrication checks, and addressing any signs of misalignment, wear, or damage. Timely maintenance helps identify and rectify potential sources of noise before they escalate and affect the joint’s performance and reliability.

By implementing these measures and considering the specific operating conditions and requirements of the system, noise issues in a universal joint can be effectively addressed. It’s important to consult the manufacturer’s guidelines and recommendations for proper installation, operation, and maintenance to ensure optimal performance and minimize noise generation in the joint.

universal joint

What are the applications of a universal joint?

A universal joint, also known as a U-joint, finds applications in various industries and mechanical systems where the transmission of rotary motion is required between misaligned shafts. Here are some common applications of universal joints:

  • Automotive Drivelines: One of the most well-known applications of universal joints is in automotive drivelines. Universal joints are used in the drivetrain to transmit power from the engine to the wheels while accommodating the misalignment between the engine, transmission, and axle shafts. They are commonly found in rear-wheel drive and four-wheel drive vehicles, connecting the transmission output shaft to the drive shaft and allowing the wheels to receive power even when the suspension system causes changes in angles and positions.
  • Industrial Machinery: Universal joints are widely used in industrial machinery where the transmission of motion at angles is required. They are employed in various types of machinery, such as conveyors, mixers, pumps, printing presses, and machine tools. Universal joints enable the transfer of rotary motion between misaligned shafts, allowing these machines to operate efficiently and effectively.
  • Marine and Propulsion Systems: In marine applications, universal joints are used in propulsion systems to transmit power from the engine to the propeller shaft. They allow for the necessary flexibility to accommodate the movement of the vessel and changes in the propeller shaft angle. Universal joints are also used in marine steering systems to transfer motion between the steering wheel and the rudder or outboard motor.
  • Agricultural Equipment: Universal joints are utilized in agricultural machinery and equipment such as tractors, combines, and harvesters. They enable the transmission of power between different components, such as the engine, gearbox, and wheels, even when these components are not perfectly aligned. Universal joints provide the necessary flexibility to accommodate the movement and articulation required in agricultural operations.
  • Aerospace and Aviation: Universal joints are used in aerospace and aviation applications where motion transmission at angles is required. They can be found in control systems for aircraft wings, flaps, and landing gear. Universal joints allow for the transfer of motion and control inputs between different components, ensuring smooth and reliable operation.
  • Heavy Machinery and Construction Equipment: Universal joints are employed in heavy machinery and construction equipment, such as cranes, excavators, and loaders. They enable the transmission of power and motion between different parts of the machinery, accommodating the misalignment that may arise due to the movement and articulation of these machines.
  • Railway Systems: Universal joints are used in railway systems for various applications. They are employed in drivetrains and power transmission systems to transmit motion between different components, such as the engine, gearboxes, and axles. Universal joints allow for smooth power transfer while accommodating the misalignment caused by the suspension and movement of the train.
  • Robotics and Automation: Universal joints find applications in robotics and automation systems where motion needs to be transmitted between misaligned components. They are used in robotic arms, manipulators, and other automated systems to enable flexible and precise movement while accommodating misalignment and articulation requirements.

These are just a few examples of the diverse range of applications for universal joints. Their ability to transmit rotary motion between misaligned shafts with flexibility and efficiency makes them an essential component in numerous industries and mechanical systems.

China Professional 10c Universal Joint for CZPT  China Professional 10c Universal Joint for CZPT
editor by CX 2024-02-07