China supplier 10c Universal Joint for CZPT

Product Description

Spicer  P (mm) R (mm) Caterpillar Precision  Rockwell  GKN Alloy Neapcon Serie  Bearing type
5-2002X 33.34 79 644683 951 CP2002 HS520   1-2171 2C 4LWT
5-2117X 33.34 79 316117 994   HS521   1-2186 2C 4LWD
5-2116X 33.34 79 6S6902 952 CP2116   1063   2C 2LWT,2LWD
5-3000X 36.5 90.4 5D9153 536   HS530 1711 3-3152 3C 4LWT
5-3014X 36.5 90.4 9K1976 535   HS532     3C 2LWT,2LWD
5-4143X 36.5 108 6K 0571 969   HS545 1689 3-4143 4C 4HWD
5-4002X 36.5 108 6F7160 540 CP4002 HS540 1703 3-4138 4C 4LWT
5-4123X 36.5 108 9K3969 541 CP4101 HS542 1704 3-4123 4C 2LWT,2LWD
5-4140X 36.5 108 5M800 929 CP4130 HS543   3-4140 4C 2LWT,2HWD
5-1405X 36.5 108   549     1708   4C 4LWD
5-4141X 36.5 108 7M2695 996         4C 2LWD,2HWD
5-5177X 42.88 115.06 2K3631 968 CP5177 HS555 1728 4-5177 5C 4HWD
5-5000X 42.88 115.06 7J5251 550 CP5122 HS550 1720 4-5122 5C 4LWT
5-5121X 42.88 115.06 7J5245 552 CP5101 HS552 1721 4-5127 5C 2LWT,2LWD
5-5173X 42.88 115.06   933   HS553 1722 4-5173 5C 2LWT,2HWD
5-5000X 42.88 115.06   999         5C 4HWD
5-5139X 42.88 115.06             5C 2LWD,2HWD
5-6102X 42.88 140.46 643633 563 CP62N-13 HS563 1822 4-6114 6C 2LWT,2HWD
5-6000X 42.88 140.46 641152 560 CP62N-47 HS560 1820 4-6143 6C 4LWT
5-6106X 42.88 140.46 1S9670 905 CP62N-49 HS565 1826 4-6128 6C 4HWD
G5-6103X 42.88 140.46   564     1823 4-6103 6C 2LWT,2LWD
G5-6104X 42.88 140.46   566     1824 4-6104 6C 4LWD
G5-6149X 42.88 140.46             6C 2LWD,2HWD
5-7105X 49.2 148.38 6H2577 927 CP72N-31 HS575 1840 5-7126 7C 4HWD
5-7000X 49.2 148.32 8F7719 570 CP72N-32 HS570 1841 5-7205 7C 4LWT
5-7202X 49.2 148.38 7J5242 574 CP72N-33 HS573 1843 5-7207 7C 2LWT,2HWD
5-7203X 49.2 148.38   575 CP72N-55     5-7208 7C 4LWD
5-7206X 49.2 148.38   572 CP72N-34   1842 5-7206 7C 2LWT,2LWD
5-7204X 49.2 148.38   576 CP72N-57     5-7209 7C 2LWD,2HWD
5-8105X 49.2 206.32 6H2579 928 CP78WB-2 HS585 1850 6-8113 8C 4HWD
5-8200X 49.2 206.32   581 CP82N-28   1851 6-8205 8C 4LWT

Condition: New
Certification: ISO, Ts16949
Structure: Single
Material: 20cr
Type: Universal Joint
Transport Package: Box + Plywood Case
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

universal joint

How do you prevent premature wear in a universal joint?

Preventing premature wear in a universal joint is crucial for maintaining its performance, longevity, and reliability. Here’s a detailed explanation:

Several measures can be taken to prevent premature wear in a universal joint:

  1. Proper Lubrication: Adequate lubrication is essential for reducing friction, dissipating heat, and preventing premature wear in a universal joint. Regularly lubricating the joint with the recommended lubricant, such as grease or oil, helps to create a protective film between the moving parts, minimizing frictional losses and preventing metal-to-metal contact.
  2. Correct Alignment: Misalignment is a common cause of premature wear in a universal joint. Ensuring proper alignment between the shafts connected by the joint is crucial to distribute the load evenly and prevent excessive stress on the joint’s components. Misalignment can be minimized by using precision alignment techniques and checking the operating angles specified by the manufacturer.
  3. Appropriate Operating Angles: Universal joints have specified operating angles within which they can operate optimally. Operating the joint beyond these recommended angles can lead to increased wear and reduced lifespan. It is important to adhere to the manufacturer’s guidelines regarding the maximum allowable operating angles to prevent premature wear.
  4. Regular Maintenance: Implementing a regular maintenance schedule can help identify and address potential issues before they escalate into significant problems. Routine inspections of the universal joint, including checking for signs of wear, corrosion, or damage, can help detect any issues early on and allow for timely repairs or replacements.
  5. Proper Torque Capacity: Selecting a universal joint with an appropriate torque capacity for the specific application is essential for preventing premature wear. If the joint is subjected to torque levels exceeding its capacity, it can lead to excessive stress, deformation, and wear on the components. Ensuring that the selected joint can handle the expected loads and operating conditions is crucial.
  6. Quality Components: Using high-quality universal joint components, such as yokes, cross bearings, and needle bearings, can significantly contribute to preventing premature wear. Components made from durable materials with excellent strength and wear resistance properties are more likely to withstand the demanding conditions and provide longer service life.
  7. Avoiding Overloading: Overloading a universal joint beyond its rated capacity can lead to accelerated wear and failure. It is important to operate the joint within its specified load limits and avoid subjecting it to excessive torque or radial loads. Understanding the application requirements and ensuring that the joint is appropriately sized and rated for the intended load is crucial.

By following these preventive measures, it is possible to minimize premature wear in a universal joint, enhance its durability, and prolong its operational life. Regular maintenance, proper lubrication, correct alignment, and adherence to operating guidelines are key to ensuring optimal performance and preventing premature wear in universal joints.

universal joint

What is the lifespan of a typical universal joint?

The lifespan of a typical universal joint can vary depending on several factors. Here’s a detailed explanation:

The lifespan of a universal joint depends on various factors, including the quality of the joint, operating conditions, maintenance practices, and the specific application. While it is challenging to provide an exact lifespan, considering the following factors can help estimate the longevity of a universal joint:

  • Quality and Materials: The quality of the universal joint and the materials used in its construction play a significant role in determining its lifespan. High-quality joints made from durable materials, such as alloy steels or stainless steels, tend to have longer lifespans compared to lower-quality or less robust joints made from inferior materials.
  • Operating Conditions: The operating conditions in which the universal joint is used can significantly impact its lifespan. Factors such as torque levels, rotational speed, angular misalignment, vibration, temperature, and exposure to contaminants can all affect the joint’s performance and longevity. Operating the joint within its specified limits, avoiding excessive or extreme conditions, and providing proper maintenance can help extend its lifespan.
  • Maintenance Practices: Regular maintenance is essential for maximizing the lifespan of a universal joint. Proper lubrication, periodic inspection for wear or damage, and timely replacement of worn components can help prevent premature failure. Adhering to the manufacturer’s recommended maintenance schedule and guidelines is crucial to ensure optimal performance and longevity.
  • Application Requirements: The specific application requirements and demands placed on the universal joint influence its lifespan. Heavy-duty applications with high torque, frequent load fluctuations, or extreme operating conditions may result in increased stress and wear on the joint, potentially shortening its lifespan. Selecting a universal joint that is specifically designed and rated for the application’s requirements can help ensure a longer lifespan.

Given these factors, it is challenging to provide a precise lifespan for a typical universal joint. In some applications with proper maintenance and suitable operating conditions, a universal joint can last for several years. However, in demanding or harsh operating environments, or if subjected to excessive loads or misalignment, the lifespan of the joint may be shorter, requiring more frequent replacements.

It’s important to consult the manufacturer’s guidelines and recommendations for the specific universal joint being used, as they can provide more accurate information regarding its expected lifespan under different operating conditions. Additionally, monitoring the joint’s performance, conducting regular inspections, and addressing any signs of wear or deterioration can help identify the need for replacement and ensure safe and reliable operation.

universal joint

Can you explain the purpose of a universal joint in a drive shaft?

In a drive shaft, a universal joint serves a crucial purpose in transmitting rotational motion between the engine or power source and the driven wheels or other components. Let’s delve into the purpose of a universal joint in a drive shaft:

A drive shaft is a mechanical component that transfers torque from the engine or power source to the wheels or other driven components in a vehicle or machinery. It is typically used in rear-wheel drive and four-wheel drive systems. The drive shaft connects the transmission output shaft to the differential or axle assembly, allowing the wheels to receive power and propel the vehicle forward.

The purpose of a universal joint in a drive shaft is to accommodate the misalignment and changes in angles between the transmission and the differential or axle assembly. Misalignment can occur due to various factors, including the vehicle’s suspension system, the position of the engine, and the movement of the wheels. Without a flexible coupling mechanism, misalignment would cause binding, vibration, and potential damage to the drive shaft and other drivetrain components.

Universal joints provide the necessary flexibility and articulation to compensate for misalignment and changes in angles. They allow the drive shaft to bend and rotate at varying angles while transmitting torque from the transmission to the differential. The universal joint allows the drive shaft to operate smoothly and efficiently, even when the vehicle is in motion and the suspension system causes changes in the relative positions of the transmission and the differential.

When the engine or power source rotates the drive shaft, the universal joint allows angular displacement between the transmission and the differential. As the drive shaft bends and changes angles, the universal joint accommodates these movements, ensuring continuous torque transmission without placing excessive stress on the drivetrain components.

The universal joint consists of a cross-shaped or H-shaped yoke with bearings at the ends of each arm. These bearings allow for smooth rotation and minimize friction between the yoke and the drive shaft. The design of the universal joint enables it to flex and articulate, compensating for misalignment and changes in angles without affecting the rotation of the drive shaft.

Overall, the purpose of a universal joint in a drive shaft is to provide the necessary flexibility and articulation to accommodate misalignment and changes in angles. By allowing the drive shaft to bend and rotate at varying angles, the universal joint ensures smooth and efficient torque transmission between the engine and the driven wheels or components, contributing to the proper functioning of the vehicle or machinery.

China supplier 10c Universal Joint for CZPT  China supplier 10c Universal Joint for CZPT
editor by CX 2023-11-14