China Custom Universaljoint 68*165 for China Truck 6800 Uj Cross

Product Description

Product Usage
   A universal joint bearing(universal coupling, U-joint, Spicer or Hardy Spicer joint, Cardan joint, or Hooke’s joint) is a kind of bearing composed of cross/coupling/spider and 4 4 grease-filled needle roller bearings.It is commonly used with shafts that transmit rotary motion.It can transmit large torque at low friction.
   Universal joint bearings are for use in various types of application. They are used in the automotive industry, for joints in commercial vehicle propeller shafts, and also in other industries, for special applications.
   HongHui automobile manufacturer could offer universal joint in a variety of sizes and dimensions in order to match with different types of heavy and light vehicles. High grade raw material is used to manufacture our universal joint. 

Product Image

other instructions
1>it is FOB HangZhou price . (also can send free to HangZhou HangZhou /ning bo ZheJiang and so on. warehouse  .)
2>the material is 20cr  good material , must not any complain from your customers. (also have 20Mn . 20cr Mn Ti )
3>our delivery time is 40days (with 20Gp container ) . very in time .
4> Can develop according to customer’s drawings or samples
5> OEM is available
6> Full range for the universal joint
7> Good quality and resonable price

Packaging & Delivery
the packing . Standard netural packing with carton.
Delivery detail: 30-45 working days,depend on the actual produce condition

FAQ
Q1: What is the location of your company?
A1: Our company is located in the Quan Zhou(Jin jiang) City ,Fu jian province,China.Welcome to visit our factory at anytime!
 
Q2: How does your factory do regarding quality control?
A2: Our standard QC system to control quality(TS16949 2016).
 
Q3: What is your delivery time?
A3: Usually within 30-40 days after the receipt of payment.Delivery time must depend on the actual produce condition.
 
Q4: What are your strengths?
A4: 1.We are the manufacturer,having competitive advantage in price.
 
2.A large part of money is put into advancing CNC equipments and product
R&D department annual,the performance of universal joint can be guaranteed.
 
3.About quality issues or follow-up after-sales service,we report directly to the boss.

Specification
There is no uniform standard for the specifications of cross assemblies. Please contact us directly for confirmation.
 
 

Condition: New
Color: Natural Color, Silver
Certification: CE, ISO
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

universal joint

What are the potential challenges in designing and manufacturing universal joints?

Designing and manufacturing universal joints can present various challenges that need to be addressed to ensure optimal performance and reliability. Here’s a detailed explanation:

1. Misalignment Compensation: Universal joints are primarily designed to accommodate angular misalignment between two shafts. Designing a universal joint that can effectively compensate for misalignment while maintaining smooth power transmission can be challenging. The joint must provide flexibility without sacrificing strength or introducing excessive play, which could lead to vibration, noise, or premature wear.

2. Torque Transmission: Universal joints are often used in applications that require the transfer of high torque loads. Designing the joint to handle these loads without failure or excessive wear is a significant challenge. The selection of appropriate materials, heat treatment processes, and bearing designs becomes crucial to ensure the strength, durability, and reliability of the joint.

3. Lubrication and Sealing: Universal joints require proper lubrication to minimize friction, heat generation, and wear between the moving components. Designing an effective lubrication system that ensures sufficient lubricant supply to all critical areas can be challenging. Additionally, designing seals and protective covers to prevent contamination and retain lubrication presents a challenge, as the joint must maintain flexibility while ensuring adequate sealing.

4. Bearing Design and Wear: Universal joints rely on bearings to facilitate smooth rotation and to support the shafts. Designing the bearing arrangement to withstand the loads, maintain proper alignment, and resist wear is essential. Choosing the appropriate bearing type, such as needle bearings or plain bearings, and optimizing their size, material, and lubrication conditions are key challenges in the design process.

5. Manufacturability: Manufacturing universal joints with precision and consistency can be challenging due to their complex geometries and the need for tight tolerances. The manufacturing process must ensure accurate machining, assembly, and balancing of the joint components to achieve proper fit, alignment, and balance. Specialized machining techniques and quality control measures are often required to meet the desired specifications.

6. Cost and Size Optimization: Designing universal joints that are cost-effective and compact while meeting performance requirements can be a challenging task. Balancing the need for robustness, durability, and material efficiency with cost considerations requires careful engineering and optimization. Designers must strike a balance between performance, weight, space constraints, and manufacturing costs to create an efficient and economical universal joint.

7. Application-Specific Considerations: Designing universal joints for specific applications may introduce additional challenges. Factors such as environmental conditions, temperature extremes, exposure to corrosive substances, high-speed operation, or heavy-duty applications need to be carefully considered and addressed in the design and material selection process. Customization and adaptation of universal joints to meet unique application requirements can pose additional challenges.

Addressing these challenges in the design and manufacturing process requires a combination of engineering expertise, material science knowledge, advanced manufacturing techniques, and thorough testing and validation procedures. Collaboration between design engineers, manufacturing engineers, and quality control personnel is crucial to ensure the successful development and production of reliable universal joints.

In summary, the potential challenges in designing and manufacturing universal joints include misalignment compensation, torque transmission, lubrication and sealing, bearing design and wear, manufacturability, cost and size optimization, and application-specific considerations. Overcoming these challenges requires careful engineering, precision manufacturing processes, and consideration of various factors to achieve high-performance and reliable universal joints.

universal joint

How do you calculate the operating angles of a universal joint?

Calculating the operating angles of a universal joint involves measuring the angular displacement between the input and output shafts. Here’s a detailed explanation:

To calculate the operating angles of a universal joint, you need to measure the angles at which the input and output shafts are misaligned. The operating angles are typically expressed as the angles between the axes of the two shafts.

Here’s a step-by-step process for calculating the operating angles:

  1. Identify the input shaft and the output shaft of the universal joint.
  2. Measure and record the angle of the input shaft relative to a reference plane or axis. This can be done using a protractor, angle finder, or other measuring tools. The reference plane is typically a fixed surface or a known axis.
  3. Measure and record the angle of the output shaft relative to the same reference plane or axis.
  4. Calculate the operating angles by finding the difference between the input and output shaft angles. Depending on the arrangement of the universal joint, there may be two operating angles: one for the joint at the input side and another for the joint at the output side.

It’s important to note that the specific method of measuring and calculating the operating angles may vary depending on the design and configuration of the universal joint. Some universal joints have built-in methods for measuring the operating angles, such as markings or indicators on the joint itself.

Additionally, it’s crucial to consider the range of acceptable operating angles specified by the manufacturer. Operating a universal joint beyond its recommended angles can lead to increased wear, reduced lifespan, and potential failure.

In summary, calculating the operating angles of a universal joint involves measuring the angular displacement between the input and output shafts. By measuring the angles and finding the difference between them, you can determine the operating angles of the universal joint.

universal joint

What are the benefits of using a universal joint in a mechanical system?

Using a universal joint in a mechanical system offers several benefits that contribute to the efficient and reliable operation of the system. Here are some of the key advantages:

  • Misalignment compensation: One of the primary benefits of a universal joint is its ability to compensate for misalignment between rotating shafts. Universal joints can effectively transmit rotary motion between shafts that are not perfectly aligned, allowing for flexibility in system design and assembly. This flexibility accommodates various installation constraints and helps to minimize stress and wear on components.
  • Angular motion transmission: Universal joints enable the transmission of angular motion between shafts that are not parallel or collinear. They can transfer rotational movement even when the shafts are at different angles to each other. This capability is particularly useful in applications where the shafts need to be connected at non-linear or offset angles, providing versatility and enabling complex mechanical systems.
  • Torque transmission: Universal joints are capable of transmitting torque between shafts efficiently. They allow for the transfer of power from one shaft to another without a direct and rigid connection. This feature is especially important in applications where there may be slight misalignment or movement between the shafts due to factors like suspension systems, articulation, or vibration.
  • Reduced vibration and shock absorption: Universal joints can help dampen vibration andshocks in a mechanical system. They absorb and distribute the impact forces caused by uneven movement or external disturbances, reducing the transmission of vibrations to other parts of the system. This feature is particularly beneficial in applications where smooth operation and reduced wear and tear are essential, such as automotive drivelines or industrial machinery.
  • Constant velocity transmission: Certain types of universal joints, such as double joints or constant velocity joints, provide constant velocity transmission. These joints eliminate speed variations and maintain a consistent rotational speed even when the input and output shafts are at different angles. Constant velocity transmission is crucial in applications where precise and uniform motion is required, such as automotive steering systems or robotics.
  • Flexibility and articulation: Universal joints offer flexibility and articulation, allowing for movement and rotation in multiple directions. They can accommodate changes in the orientation and position of connected shafts, providing mechanical systems with the ability to adapt to dynamic conditions. This flexibility is particularly advantageous in applications involving moving parts, such as suspension systems, robotic arms, or machinery with articulating components.
  • Compact design: Universal joints are relatively compact in size, making them suitable for applications with space constraints. Their compact design allows for efficient integration into mechanical systems without occupying excessive space. This feature is valuable in various industries, including automotive, aerospace, and robotics, where optimizing space utilization is crucial.
  • Reliability and durability: Universal joints are designed to be durable and reliable, with the ability to withstand high loads, torque, and operating conditions. They are constructed from robust materials and undergo rigorous testing to ensure long-lasting performance. This reliability makes them suitable for demanding applications in industries such as automotive, manufacturing, agriculture, and more.

The benefits of using a universal joint in a mechanical system contribute to improved functionality, increased efficiency, and extended component lifespan. By enabling misalignment compensation, angular motion transmission, torque transfer, vibration reduction, constant velocity transmission, flexibility, and compact design, universal joints enhance the overall performance and reliability of mechanical systems.

China Custom Universaljoint 68*165 for China Truck 6800 Uj Cross  China Custom Universaljoint 68*165 for China Truck 6800 Uj Cross
editor by CX 2023-11-14